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Abstract 

    It is claimed that current practices in grid convergence studies, particularly in the field 

of external aerodynamics, are flawed. The necessary conditions to properly establish grid 

convergence are presented. A theoretical model and a numerical example are used to 

demonstrate these ideas.  
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1. Introduction 

 

    Grid convergence is an important process in verifying that discrete numerical solutions 

are valid representations of the governing partial differential equations describing the 

phenomenon under investigation. With increased emphasis on the subject of Verification 

and Validation [1], [2] and with many fluid and numerical methods journals now 

adopting policy statements on numerical accuracy, grid convergence is a topic frequently 

visited, but rarely performed correctly. In this note, the state-of-the-practice of 

computational fluid dynamics (CFD), particularly as it is applied for external 

aerodynamics, is reviewed and some observations are made regarding the apparent lack 

of convergence.  
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    The results presented are for regular-structured grids. Similar results can be obtained 

for regular-unstructured grids (i.e. grids consisting of isosceles triangles in 2D). The 

general unstructured grid problem has not been investigated. 

 

2. Current Practice 

 

    To illustrate the state-of the-practice in grid convergence, consider the drag prediction 

workshops sponsored by the Applied Aerodynamics Technical Committee of the 

American Institute of Aeronautics and Astronautics. The first of these workshops, the 

Drag Prediction Workshop-I (DPW-I), was held in June of 2001.  The workshop required 

the evaluation of the force and moment coefficients by CFD of a relatively simple wing-

body configuration known as the DLR-F4. This particular configuration was chosen 

because it had been tested in 3 wind tunnels. A total of 35 solutions based on Reynolds 

averaged Navier-Stokes (RANS) flow solvers, representing a very wide cross section of 

the CFD community, were presented at the workshop. Of these, 21 solutions were 

obtained on grids provided by the workshop organizers and 14 on grids created by the 

participants. A summary of the data presented at the workshop is given in [3] and a 

statistical analysis of the data is presented in [4]. Surprisingly, a demonstration of grid 

convergence was not a requirement of the workshop. However, in a later study Lee-

Rausch et al. [5] assessed the grid convergence of 4 of the codes used in the workshop 

using the same DLR-F4 configuration. The second Drag Prediction Workshop-II (DPW-

II) was held in June of 2003.  The DPW-II Organizing Committee, at the request of the 

workshop participants, focused the second workshop on a more complex model [5]. The 
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new model, the DLR-F6, consisted of wing-body (WB) and wing-body nacelle-pylon 

(WBNP) configurations. The DLR-F6 wing-body configuration was very similar to the 

DLR-F4 configuration with minor changes in the airfoil sections introduced to reduce the 

chances of boundary layer separation. Wind tunnel tests for this configuration were 

conducted in 1990 at the S2MA pressurized tunnel of the ONERA center at Modane. As 

in the first workshop, standard grids were provided, but for this workshop a grid 

refinement study was required. A total of 29 data sets were submitted, however a number 

of these represented variations of the same code. The solutions presented at this 

workshop are summarized in [6] and were statistically analyzed in [7]. Additional grid 

convergence studies of the DLR-F6 configurations are presented in [8] and [9]. 

 

    A review of the references cited above, and of the many other papers associated with 

the drag prediction workshops, reveals some curious facts. The current practice is to 

conduct convergence studies on the basis of surface integral coefficients such as the 

coefficients of drag, lift and moment. These are plotted with respect to some measure of 

the grid size, which we shall call h, raised to a power p, where p is the formal grid 

accuracy of the numerical scheme used. Finally, we notice that it is common practice in 

the literature to present grid convergence studies that do not show convergence. Hence, 

we have to conclude that the actual act of doing a grid convergence study far outweighs 

the results of the study. Figure 1 is representative of a typical figure from these studies. 

Here the moment coefficients from four of the codes used in the DPW-II are plotted 

against the grid spacing squared, since the methods used are formally second order 

accurate.  
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  The practice of evaluating grid convergence with respect to ph  follows from usual 

Taylor expansion studies of a numerical scheme which show that a computed quantity 

c
f is related to the exact value 

e
f  of the solution of the differential equation by 

 

. . . ,p

e c
f f ch H O T= + +                                          (1.1) 

 

where c is a coefficient independent of h. For h sufficiently small, the higher order terms 

are negligible compared to the leading term ph  and the exact solution is related to the 

computed solution simply by 

 

.p

e c
f f ch≈ +                                                   (1.2) 

 

When this happens, we say that the solutions are in the asymptotic range of convergence. 

If we accept the validity of this expression and we have solutions on three grids which 

have converged in time (or iteration parameter) it is unnecessary to assume that p 

corresponds to the formal order of accuracy, since given three solutions Eq. (1.2) can be 

solved for the three unknowns: ,
e

f  c and p. If we evaluate these quantities from the data 

reported in the DPW-II (WB case), see Table III of [10], we find that p is far from its 

formal value of two. For example, if we consider the data in Fig. (1), for the third code 

we find p=8.54 and for the other three codes a real solution doesn’t exist, since the 

behavior of the moment coefficient is not monotonic with h. It is tempting to dismiss Eq. 
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(1.2) by suggesting that the grids used in these studies were not sufficiently fine and 

therefore the solutions are not in the asymptotic range. However, we believe that 

something more subtle is at work.  

 

3. The h Condition 

 

    For two and higher dimensional problems, Eq. (1.1) is a simplification of the actual 

Taylor expansion. For a two-dimensional problem the expansion reads 

 

. . . ,p p

e c x y
f f ah bh H O T= + + +                                (1.3) 

 

where 
x

h  and 
y

h  are the grid spacing in the x and y directions, respectively, and a, b are 

coefficients independent of  
x

h  and 
y

h . Note that if the grid is not uniform in the physical 

space, we assume an invertible one to one mapping to a computational space that renders 

the grid spacing uniform. If that is the case, Eq. (1.3) represents the expansion in the 

computational space. For both 
x

h  and 
y

h  sufficiently small, we have 

 

.p p

e c x y
f f ah bh≈ + +                                         (1.4) 

 

The current practice is to replace (1.4) with (1.2) by defining1  

 

                                                 
1 For a three-dimensional problem h is defined as 

1/ 3( ) .
x y z

h h h h=  
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x y

h h h= .                                                       (1.5) 

 

Equation (1.5) defines h to be the side of the square with area equal to the rectangle with 

sides 
x

h , 
y

h . The definition of h is not unique. Among others, h could be defined as the 

diagonal: 2 2 .
x y

h h h= +  

 

    There is an obvious advantage in using Eq. (1.2) instead of Eq. (1.4), since there are 

four unknowns in (1.4) and only three in (1.2), but this advantage comes with a condition. 

To be able to replace (1.4) by (1.2) it is necessary that 

 

 ,

,

  for ,   1,2,3,...,y k

x k

h
k k K

h
χ= ∀ =                                  (1.6) 

 

where χ, the grid aspect ratio, is constant over all k-grids2. 

 

    An example will illustrate this condition. Assume that we have a problem for which we 

know the exact solution and all other relevant information. Say that we know that a=1, 

b=5, p=2, 1
e

f =  and h is defined by (1.5). If we solve the problem on three grids that 

satisfy (1.6), we find the results listed on Table I. On the table, ε is the error defined by: 

,
e c

f fε = −  and Nx and Ny are the number of grid points in the x and y directions, 

                                                 
2 For a three-dimensional problem , ,

, ,

  for ,   1,2,3,..., .y k z k

x k x k

h h
k k K

h h
χ= = ∀ =  
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respectively. If we now use the computed
,c k

f and the values of 
k

h  in Eq. (1.2), we find 

p=2, 1
e

f = and c=12.9, which is consistent with the original data. Now we repeat the 

exercise using three grids that do not have constant aspect ratio. The results are listed in 

Table II. If we use these results (
,c k

f ,
k

h ) in Eq. (1.2), we find p=2.36, .999
e

f =  and 

c=34.75. The results are no longer consistent with the original data. It is important to note 

that the data in Table II represents data of a second order accurate method, but because 

the grid aspect ratio is not constant Eq. (1.2) is unable to recover this fact. Note also that 

the grid points in Table II were chosen such that the ratio of successive 
k

h ’s is constant, 

but this, despite claims in [2], does not make Eq. (1.2) valid. 

 

4. A Numerical Example: Ringleb Flow 

 

    Ringleb flow describes an inviscid, compressible, transonic flow, with isentropic 

exponent of 1.4, making a o180  turn. The exact solution for this flow was found by 

Ringleb [11] in 1941. We solve the Ringleb flow problem using MacCormack’s [12]   

second order accurate, two step method on grids consisting of streamlines and iso-

potential lines, as depicted in Figure 2. The lower boundary for the case we will be 

computing corresponds to a streamline that reaches a Mach number of 1.8 at x=0 and 

extends to the point where its Mach number is 0.6. The upper boundary corresponds to a 

streamline that reaches a Mach number of 1.2 at x=0 and is terminated by the iso-

potential line emanating from the lower boundary. Since the flow is symmetric about 

x=0, we only compute in the half-plane 0.x ≤  We consider 5 grid-sets, identified by an 
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index i, for each grid-set the grid aspect ratio is constant. Each grid-set consists of 4 grids 

identified by an index k. For each grid we compute a pressure-residual to establish 

temporal convergence and an error based on the magnitude of the flow velocity defined 

by 

 

 
,

1 1

/( ),
M N

exact n m
m n

q q N Mε
= =

= − ×∑∑                                   (1.7) 

 

where 
exact

q  is the exact magnitude of the flow velocity, 
,n m

q  is the computed magnitude 

of the flow velocity at grid point n, m and N, M are the total number of grid points in the 

streamline and iso-potential line directions, respectively. The results are tabulated in 

Table III. 

 

    In Figure 3 we plot the log of ε vs. the log of h. The slope of the lines χ=constant 

corresponds to the convergence rate p. We notice that for grid-sets 1 and 2, corresponding 

to χ(.5, 1), the four grid values line-up in a straight line. Grid-set 3, χ=2, deviates slightly 

from a straight line, while the deviation is more pronounced for grid-sets 4 and 5, χ(3, 4). 

The significance of this is that as the grid aspect ratio increases a finer grid is needed to 

enter the asymptotic range. Thus, grid i=1, k=1 is in the asymptotic range, but grid i=4, 

k=1 is not. The last column of Table III tabulates the convergence rate p for each grid-set 

based on the slope of the two finest grids on each grid-set. The value of p rounds-up to 

2.2 for the first 3 grid-sets then slightly increases for the last two grid-sets, an indication 

that finer grids are needed to enter the asymptotic range as χ increases. This is shown on 
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Figure 4 where the convergence rate is plotted as a function of h.  For this figure p is 

obtained from 

 

 ( ) ( )1 1
log( ) log( ) / log( ) log( ) ,

k k k k
p h hε ε

− −
= − −                             (1.8) 

 
 
and h follows from 
 
 

 ( )1
/ 2.

k k
h h h

−
= +                                          (1.9) 

 
 

Calculations with finer grids than those listed on Table III were used to create this figure. 

We also notice in Figure 3 a folding-over of grid-sets 3 and 4. This is an indication that 

with h-fixed there is a χ that minimizes the error. This is depicted on Figure 5 where χ is 

unfolded by plotting the error vs. the grid aspect ratio while keeping h constant at 0.0408. 

For this problem, the optimum χ has a value approximately equal to 2.25. Figure 6 shows 

the error ε as a function of ph with p=2.2. Only the three finest grid (k=2,3,4) values are 

used in this figure and the error is extrapolated for 0h → . These results show that Eq. 

(1.2) is valid when condition (1.6) is satisfied. What happens if this is not the case? 

Consider the following grid-set (i,k)=(1,1), (3,3) and (4,3). This set consists of grids with 

different aspect ratios, but the error is monotonic with h. Although the data from this set 

corresponds to solutions with convergence rate of approximately 2.2, when we compute 

the convergence rate solving Eq. (1.2) we find p=9.94. If the grids do not satisfy 

condition(1.6), then Eq. (1.2) cannot be used to establish convergence. However, while it 

is convenient to use Eq. (1.2) it is not necessary to do so. Using the values from grids 

(i,k)=(1,4), (2,4) and (3,4), which clearly do not satisfy (1.6), we find from Eq. (1.4) that 



 11

p=2.4. For this grid-set the error is not monotonic with h and if p is evaluated by solving 

Eq. (1.2), we find that p is not real. 

5. Concluding Remarks 

    Today grid convergence studies with grids in the tens of million grid points are carried 

out to assess and verify the validity of numerical solutions for flows over aircraft 

configurations. In the very near future grids in the hundreds of million grid points will be 

used. These studies are expensive, time consuming and impose large demands on our 

computer infrastructure. Many of these previous grid convergence studies have been 

flawed, most probably not because of problems with the codes, but because the 

procedures used to establish convergence have been flawed. A grid convergence study 

has two primary purposes: 1) to establish convergence, and 2) to determine the rate of 

convergence. The first is significantly more important than the second. As part of a 

convergence study, we need to determine that the solutions are in the asymptotic range 

and we need to find what the actual convergence rate is. Neither should be assumed as 

part of the process. In establishing the actual convergence rate, it is important to 

remember that the formal rate is established on the basis of a numerical algorithm that is 

used for the calculation of the field points. The algorithm is usually modified at the 

boundaries and boundary data alone might not reflect the formal rate.3 Finally, if we want 

to take advantage of the simplifications inherent in (1.2), it is necessary to insure that the 

grids used conform to condition (1.6). 

                                                 
3 This was not the case in our example with Ringleb flow. Using only boundary data we obtained 
convergence rates close to the rates we found using the field data. However, much care was taken in the 
implementation of the boundary conditions which resulted in a formally second order method at the 
boundaries. 
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Figure 1. Variation of moment coefficient as a function of grid spacing squared. 
Data from DPW-II, WB case. 
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Figure 2. Typical grid used in numerical calculations of Ringleb flow. 
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Figure 3. Log(ε) vs. log(h) for several grid aspect ratios. 
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Figure 4. Convergence rate behavior with grid refinement. 
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Figure 5. Error vs. grid aspect ratio with h constant at 0.0408. 
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Figure 6. Computed Ringleb flow error vs. ph  with p=2.2. 
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k Nx Ny χ h ε c
f  

1 25 10 2.5 .06324 .0516 .9484 

2 50 20 2.5 .03162 .0129 .9871 

3 75 30 2.5 .02108 .0057 .9943 

 

Table I. Results from a simulation with constant grid aspect ratio. 
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k Nx Ny χ h ε c
f  

1 25 10 2.5 .06324 .0516 .9484 

2 40 20 2.0 .03535 .0131 .9869 

3 64 40 1.6 .01976 .0034 .9966 

 

Table II. Results from a simulation with varying grid aspect ratio. 
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i k N M χ = 
 N/M 

ε pressure 
residual 

p 
 

1 1 15 30 .5 0.0029603 6.55e-007 2.1815 
 2 20 40 .5 0.0015623 9.44e-008  
 3 25 50 .5 0.0009561 3.06e-008  
 4 30 60 .5 0.0006423 1.47e-008  
2 1 16 16 1 0.0024823 1.65e-010 2.1905 
 2 21 21 1 0.0013311 1.91e-007  
 3 31 31 1 0.0005612 2.14e-008  
 4 41 41 1 0.0003042 3.80e-009  
3 1 20 10 2 0.0017611 1.98e-008 2.2330 
 2 30 15 2 0.0006655 3.48e-008  
 3 40 20 2 0.0003449 1.68e-008  
 4 50 25 2 0.0002095 3.94e-009  
4 1 30 10 3 0.0012655 1.46e-008 2.3558 
 2 45 15 3 0.0004158 5.68e-010  
 3 60 20 3 0.0002072 3.72e-011  
 4 75 25 3 0.0001225 2.69e-011  
5 1 40 10 4 0.0012033 1.45e-010 2.4573 
 2 60 15 4 0.0003636 5.55e-011  
 3 80 20 4 0.0001768 1.02e-011  
 4 100 25 4 0.0001022 1.00e-011  

 

Table III. Cases computed for Ringleb flow. 

 

 

 

 

 

 


